Деление натуральных чисел столбиком: правило, примеры

Общие сведения

Деление — сложная операция математического характера, позволяющая найти один из множителей. Она имеет следующий вид: w: s=t, где w — делимое, s — делитель, t — частное. Далее необходимо ознакомиться с основными определениями ее компонентов.

Делимое — числовое значение, которое делится с остатком или без него на один из сомножителей. Делитель — некоторый коэффициент, необходимый для выполнения операции деления и представленный одним из сомножителей. Частное — результирующая величина деления двух или более чисел. Следует отметить, что операция обозначается символом: или /. Однако в математике для удобства применяется последняя форма представления.

Если рассмотреть определение, то s и t — сомножители, а w — их произведение. Деление, как и другую арифметическую операцию, возможно произвести в столбик. Однако для этого необходимы базовые знания. К ним относятся следующие:

  1. Виды операций деления.
  2. Признаки делимости двух чисел нацело.

В математике не всегда при делении двух чисел получается целочисленное значение. Математики классифицируют операцию на два элемента:

  1. Нацело.
  2. С остатком.

В первом случае необходимо знать признаки делимости одного числа на другое

Это очень важно, поскольку иногда требуется сокращать дробные выражения, и обязательным условием данного действия является целочисленное деление на одно и то же значение.

Как делить столбиком числа с нулями?

улыбчивая девочка у школьной доски

Последовательность и алгоритм действий аналогичен классическому, рассмотренному в первом разделе.

Из нюансов отметим:

  • при наличии нулей в конце делителя и делимого смело сокращайте их. Предложите ребёнку зачеркнуть их карандашом и продолжить деление как обычно. Например, в ситуации 1200:400 ребёнок может убрать оба нуля у обоих чисел, но в ситуации 15600:560 — только по одному крайнему,
  • если ноль есть только в делителе, то подбирайте первую цифру для действия, ориентируясь на число перед ним. Например, в примере 6537:70 поставьте 9 в частное первым числом. Для данного примера совершайте умножение на обе цифры делителя и подписывайте их под тремя у делимого.

Когда нулей у делимого много и процесс деления закончился до того, как вы их все использовали, то перенесите их в частное после цифр, которые образовались до этого. Пример, 1000:2=500 — вы перенесли два последних нуля.

Итак, мы рассмотрели основные ситуации деления чисел разного количества разрядности в столбик, определили алгоритм действия и акценты для обучения ребёнка.

Практикуйте полученные знания и помогайте своему чаду осваивать математику.

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Решение задач с единицами площади

Ребята, взрослые люди часто испытывают досаду, занимаясь ремонтом дома или квартиры. Почему? Знакома ситуация, когда чуть-чуть не хватило краски или обоев? Нужно срочно бежать в магазин, чтобы купить недостающие материалы. Можно ли этого избежать? Конечно, можно! Главное, правильно выполнить расчеты. Например, правильно измерить площадь пола под покраску или площадь стен под обои.

Задача

В комнате длиной 7 м и шириной 8 м укладывают на пол ламинат квадратами 50х50 см. Сколько штук ламината потребуется для этой комнаты?

Подсказка. Вычислите площадь комнаты и площадь одного квадрата ламината. Одинаковые ли единицы площади вы использовали? Выразите квадратные метры в квадратных сантиметрах.

Решите задачу самостоятельно.

Проверь себя.

S пола = 7 ∙ 8 = 56 (м²)

S лам. = 50 ∙50 = 2 500 (см²)

1 м² = 10 000 см²

10 000 : 2 500 = 4 (шт.) – ламината в 1 м².

56 ∙ 4 = 224 (шт.) – ламината потребуется.

Ответ: 224 штук ламината.

Задача

Для покраски пола комнаты площадью 35 м² купили 3 кг краски. Хватит ли этой краски, если на 1 м² пола расходуется 100 г краски.

Выразим 3 кг в граммах.

1 кг = 1 000 г

3 кг = 3 000 г

35 ∙ 100 = 3 500 (г) – краски потребуется.

3 500 – 3000 = 500 (г) – краски не хватит для покраски пола.

Ответ: 500 г краски не хватит.

Решите аналогичную задачу самостоятельно и проверьте по образцу.

Задача

Стены комнаты решили оклеить обоями. Площадь поверхности составляет 80 м². На одной стене есть окно – 3 м², а на другой – дверь занимает 4 м². Хватит ли 7 рулонов обоев, если в одном рулоне 10 м² обоев.

Проверь себя.

3 + 4 = 7 (м²) – занимают окно и дверь.

80 – 7 = 73 (м²) – нужно оклеить обоями.

7 ∙ 10 = 70 (м²) – в семи рулонах.

73 – 70  = 3 (м²) – обоев не хватит.

Ответ: не хватит 3 м².

Ребята, на уроке мы учились делить на трехзначное число без остатка и с остатком, решали сложные задачи с единицами площади. А теперь настало время подвести итоги! Устроим небольшое соревнование на звание «Знатока математики».

Решите примеры за одну минуту!

(12 543 – 3 890 + 15 498) ∙ 69 ∙ 0 ∙594 =

640 ∙5 ∙0 +640 : 1 – 630 =

? + 150 – 240 – 10 + 26 = 526

Проверь себя.

0, 10, 600.

Кому удалось справиться с заданием за одну минуту, может смело назвать себя большим молодцом!

В первом и втором выражениях самые наблюдательные заметили умножение на нуль (можно не вычислять все выражение, а ∙ 0 = 0).

В третьем выражении первое число можно быстро найти, вычисляя с конца обратным действием: 526 – 26 + 10 + 240 – 150 = 600

Примеры на деление трехзначного числа на однозначное с ответами:

Те же самые примеры на деление одного числа на другое, целочисленное, что приведены выше, но с ответами для быстрой проверки решений.

804 : 2 = 402105 : 7 = 15702 : 3 = 234632 : 4 = 158138 : 6 = 23520 : 4 = 130910 : 7 = 130948 : 3 = 316380 : 2 = 190712 : 2 = 356261 : 9 = 29198 : 9 = 22456 : 8 = 57180 : 2 = 90927 : 3 = 309790 : 5 = 158764 : 2 = 382288 : 4 = 72636 : 6 = 106384 : 3 = 128504 : 7 = 72432 : 8 = 54504 : 9 = 56324 : 4 = 81652 : 4 = 163935 : 5 = 187224 : 4 = 56522 : 2 = 261694 : 2 = 347657 : 9 = 73425 : 5 = 85198 : 2 = 99300 : 3 = 100238 : 2 = 119840 : 6 = 140824 : 2 = 412315 : 3 = 105536 : 4 = 134350 : 2 = 175315 : 5 = 63944 : 8 = 118428 : 2 = 214418 : 2 = 209408 : 4 = 102441 : 7 = 63285 : 3 = 95118 : 2 = 59951 : 3 = 317120 : 2 = 60472 : 4 = 118 405 : 5 = 81184 : 2 = 92480 : 3 = 160994 : 2 = 497891 : 3 = 297171 : 9 = 19800 : 4 = 200812 : 2 = 406804 : 3 = 268856 : 2 = 428904 : 8 = 113234 : 9 = 26762 : 6 = 127333 : 9 = 37188 : 4 = 47360 : 2 = 180612 : 6 = 102693 : 9 = 77858 : 3 = 286475 : 5 = 95189 : 7 = 27678 : 3 = 226665 : 5 = 133278 : 2 = 139663 : 3 = 221174 : 3 = 58456 : 4 = 114753 : 3 = 251754 : 2 = 377348 : 4 = 87936 : 3 = 312837 : 9 = 93420 : 6 = 70805 : 5 = 161320 : 4 = 80330 : 3 = 110468 : 2 = 234960 : 5 = 192726 : 6 = 121238 : 7 = 34460 : 4 = 115492 : 4 = 123621 : 3 = 207122 : 2 = 61592 : 2 = 296460 : 2 = 230954 : 6 = 159318 : 3 = 106483 : 3 = 161792 : 8 = 99 576 : 9 = 64976 : 8 = 122259 : 7 = 37786 : 3 = 262232 : 4 = 58770 : 7 = 110532 : 7 = 76546 : 7 = 78864 : 8 = 108876 : 2 = 438931 : 7 = 133908 : 4 = 227312 : 6 = 52966 : 6 = 161771 : 3 = 257507 : 3 = 169526 : 2 = 263282 : 3 = 94954 : 9 = 106192 : 8 = 24144 : 2 = 72932 : 2 = 466584 : 8 = 73777 : 3 = 259603 : 9 = 67672 : 2 = 336490 : 7 = 70534 : 2 = 267471 : 3 = 157888 : 6 = 148704 : 8 = 88492 : 2 = 246484 : 2 = 242440 : 4 = 110598 : 2 = 299189 : 9 = 21196 : 2 = 98291 : 3 = 97188 : 2 = 94404 : 4 = 101276 : 3 = 92505 : 5 = 101912 : 3 = 304252 : 6 = 42150 : 2 = 75696 : 2 = 348267 : 3 = 89376 : 8 = 47180 : 9 = 20936 : 4 = 234 423 : 9 = 47996 : 2 = 498231 : 7 = 33698 : 2 = 349845 : 5 = 169636 : 2 = 318970 : 2 = 485322 : 2 = 161510 : 6 = 85784 : 4 = 196600 : 3 = 200784 : 8 = 98924 : 4 = 231450 : 5 = 90240 : 3 = 80744 : 4 = 186652 : 2 = 326975 : 3 = 325639 : 3 = 213970 : 5 = 194772 : 2 = 386535 : 5 = 107940 : 5 = 188544 : 8 = 68896 : 2 = 448472 : 8 = 59994 : 7 = 142177 : 3 = 59152 : 8 = 19606 : 3 = 202454 : 2 = 227894 : 6 = 149885 : 5 = 177288 : 6 = 48696 : 3 = 232297 : 9 = 33894 : 3 = 298980 : 4 = 245112 : 8 = 14888 : 2 = 444128 : 2 = 64350 : 7 = 50144 : 8 = 18879 : 3 = 293132 : 6 = 22801 : 3 = 267448 : 7 = 64801 : 9 = 89721 : 7 = 103699 : 3 = 233

Сгенерировано примеров на деление трехзначного числа на однозначное с ответами в качестве тренажера по математике: 200

Скачать

Распечатать

На этой странице сайта результат работы генератора случайных примеров по математике на деление трехзначного числа на однозначное для тренировки арифметических действий учениками 1, 2, 3, 4 классов средней общеобразовательной школы.

Тренировочные примеры по математике на деление трехзначного числа на однозначное для учеников первого, второго, третьего, четвертого класса можно отображать для распечатки или скачивания в два, три или четыре столбца.

Математические примеры на деление трехзначного числа на однозначное, которые приведены на этой странице сайте, могут использоваться в качестве тренажера для отработки арифметических действий учителями, преподавателями, родителями или репетиторами для учащихся 1-го, 2-го, 3-го, 4-го класса.

Задания на деление трехзначного числа на однозначное, которые находятся в этом разделе сайта, можно использовать в карточках на уроках математики для закрепления пройденного материала.

Алгоритм письменного умножения трехзначного числа на однозначное число

Давайте вспомним, что такое алгоритм на примере пчел.  Жизнь их проходит все в определенной последовательности. Насекомые работают группами и делают все по порядку: пока молодые − хлопочут в улье, более опытные насекомые вылетают на сбор нектара.

Также происходит и в мире людей. Дети с ранних лет привыкают ежедневно выполнять какие-либо дела в определенном порядке. Например, утром вы открываете глаза, потягиваетесь, встаете с кровати, совершаете туалет, занимаетесь зарядкой, завтракаете, собираетесь в школу.

Когда порядок нарушается, получается неожиданный результат, можно опоздать на уроки.

Значит, алгоритм — это последовательность определенных операций друг за другом. Например, любую математическую операцию можно провести столбиком. Умножение столбиком трехзначного числа на однозначное и деление не являются исключениями. Как всегда, надо быть внимательными и не пропускать ни одного шага, иначе выходит неправильный ответ.

В задаче нам нужно умножить 178 на 3. Правила операций будут следующими:

Сначала каждую цифру множителей запишите столбиком.  Второй множитель – тройку запишите под разрядом единиц трехзначного числа, то есть под восьмеркой.

Далее начинайте выполнять умножение с единиц. 8 × 3= 24.

Четыре напишите под единицами, а два десятка запомните.

Теперь перемножьте десятки. 7 × 3 = 21. Да два в уме. 21 + 2 = 23.

Три запишите под десятками, а два – запомните.

Перемножьте сотни. 1 × 3 = 3, да два в уме. 3 + 2 = 5.

Прочитайте выражение и ответ. 178 умножить на 3, получится 534.

Напишите ответ в задаче:  Три пчелиных семьи за лето приготовили 534 кг меда.

Летние труженицы уверены, что ребята поняли порядок умножения. Поэтому они расскажут про свой «городок», где живут и попросят о помощи.

Чтобы собрать больше меда, на опушке леса люди устраивают пасеку. На цветочной поляне выставляют друг за другом много специальных домиков для каждой пчелиной семьи. Получаются большие улицы, где каждый улей имеет свой номер. Пасечники переходят от домика к домику, ухаживают за каждым роем и собирают урожай.

Решите примеры на умножение столбиком, и подскажите номера пчелиных домиков.

Если у вас получилось верно, то вы прекрасно справились. Молодцы! Значит, без проблем сможете выполнить умножение любого многозначного числа на однозначное.

Продолжаем знакомство с пчелами. Живут труженицы совсем немного − до 40 дней. Одна пчела собирает несколько грамм нектара. Ей необходимо десять миллионов раз слетать от улья к цветку и обратно для того, чтобы получилось 500 г меда. Поэтому они работают все вместе.

Пчелиный рой опыляет девятнадцать миллионов разных цветов, пролетает триста тысяч километров, приносит нектар в соты, чтобы получился 1 кг меда. Миллионы километров потребуется пролететь пчелам, чтобы собрать десятки килограммов ценного продукта. Вот так без устали трудятся маленькие насекомые. Берите с них пример в прилежании, ребята.

Как объяснить деление столбиком

Сначала стоит доходчиво объяснить, что такое деление на простом примере. Суть математического действия — разложить число поровну. В 3-м классе дети хорошо учатся на доступных примерах: раздают кусочки торта гостям, рассаживают кукол по 2 машинам.

Когда малыш усвоит суть деления, покажите его запись на листке. Используйте уже знакомые задания с простыми числами:

  • Сначала запишите задачу обычным способом: 250:2=?
  • Каждому числу дайте название: 250 — делимое, 2 — делитель, результат после знака равно — частное.
  • Затем сделайте сокращенную запись столбиком (уголком):
  • Рассуждайте вместе так: сначала найдем неполное частное. Для этого нам потребуется сравнивать первое неполное делимое и делитель. Это будет 2, так как оно не меньше делителя, а вернее, равно ему. В этом числе помещается один делитель, значит, в частное записываем цифру 1 и умножаем ее на 2. Заносим полученный результат под делимым. Отнимаем 2-2. Получится ноль, поэтому сносим следующее число и опять подыскиваем частное. Совершаем математическое действие до тех пор, пока не получится ноль.
  • После получения окончательного результат сделайте проверку с помощью умножения: 125х2=250.

Во время объяснения правил деления в столбик желательно научить третьеклассника рассуждать в процессе вычисления вслух, выполнять действия на черновике.

Сначала проговаривайте алгоритм вместе, потом только слушайте ученика и помогайте исправить ошибки.

Методика деления в столбик

Существует определенный алгоритм для деления в столбик. Изучается он в начальных классах средних образовательных школ. Методику можно применять не только для положительных, но и отрицательных значений. При этом нужно учитывать знак:

  1. Деление отрицательной величины на отрицательную — положительное значение.
  2. При делении положительного на отрицательное или наоборот — отрицательная величина.

Алгоритм без остатка

Методика применяется в том случае, когда делимое является не простым числом, а содержит множители. Кроме того, при его делении на делитель, не соответствующий одному из признаков деления. Например, 33 делится на 2 с остатком. Однако, когда делитель равен 3, то последнего нет.

Для применения алгоритма нужно наглядно разобрать следующий пример: требуется разделить 78 на 2. Методика выполнения этой операции имеет следующий вид:

  1. Записать делимое с левой стороны, а делитель — справа.
  2. По карточке простых чисел или при помощи ручного метода необходимо определить принадлежность делимого к простым значениям (78 делится на 2, поскольку заканчивается на четную цифру 8).
  3. Разделить две значения вертикальной чертой.
  4. Выделить I неполное делимое: 7.
  5. По таблице умножения подобрать ближайшее целое (3). При произведении его на делитель должно получиться значение, которое меньше первого неполного делимого (3 * 2 = 6 < 7). Если записать 4, то 4 * 2 = 8 > 7 (вариант не подходит).
  6. Записать число, полученное при умножении делителя на подобранное значение, под I неполным делимым. Произвести операцию вычитания (7 — 6 = 1).
  7. Результат вычитания (1), который называется остатком, не делится на 2. Следовательно, нужно дописать II неполное делимое (18). Если по какой-то причине, результат делится на делитель, то подобранное значение является неверным.
  8. Значение 18 делится на 2, т. е. 18/2 = 9.
  9. Результат деления 78 на 2 равен 39.

Операция с остатком

Не во всех случаях результат деления двух чисел является целой величиной. В школьной программе встречается группа примеров, в которых требуется найти остаток, полученный при выполнении операции деления 2 значений (77/3). Алгоритм похож на предыдущий, но имеются некоторые особенности:

  1. Два числа записываются, как и в предыдущем случае.
  2. Принадлежность к множеству простых чисел не проверяется.
  3. Выделить I неполное делимое: 7.
  4. Подобрать ближайшее целое число, записав его в результат: 2.
  5. Выполнить проверку: 3 * 2 = 6 < 7 (значение подходит).
  6. Записать 6 под 7, а затем выполнить операцию вычитания: 7 — 6 = 1. Остаток меньше 3, следовательно, число подобрано правильно.
  7. Выполнить подбор множителя для 17: целочисленного значения нет. Следовательно, нужно подобрать ближайшее целое: 5.
  8. Произвести проверку: 3 * 5 = 15 < 17.
  9. Записать 5 в результат и определить остаток: 17 — 15 = 2.
  10. Результат деления 77 на 3 эквивалентен: 25 с остатком 2.

Таким образом, для выполнения операции деления двузначного числа на однозначное нужно знать признаки делимости величин, а также основные алгоритмы деления с остатком и без него.

Как объяснить ребенку деление и научить делить столбиком?

дети-школьники тренируются делить числа столбиком

Во-первых, учтите ряд вводных факторов:

  • ребёнок знает таблицу умножения
  • хорошо разбирается и умеет применять на практике действия вычитания и сложения
  • понимает разницу между целым и его составными элементами

Дальше акценты в ваших действиях выглядят так:

  • поиграйте с таблицей умножения. Положите её перед ребёнком и на примерах покажите удобство использования при делении,
  • объясните расположение делимого, делителя, частного, остатка. Предложите ребёнку повторить эти категории,
  • превратите процесс в игру, придумайте историю про цифры и действие деления,
  • подготовьте наглядные предметы для обучения. Подойдут счётные палочки, яблоки, монеты, игрушки, очищенные сведение или апельсин. Предлагайте их распределить между разным количеством людей, например, между мамой, папой и ребенком,
  • первым показывайте ребёнку действия с чётными числами, чтобы он видел результат деления, кратный двум.

Сам процесс освоения деления столбиком:

  • запишите цифры, разделив их границами. Повторите с ребёнком расположение категорий деления,
  • предложите ему проанализировать цифры делимого на предмет «больше-меньше» делителя. Помогайте вопросом — сколько раз одно число помещается во втором. В результате ребёнку следует выделить то число/числа, которые он будет применять для совершения первого действия,
  • подскажите алгоритм определения разрядности частного. Её удобно изобразить точками, которые потом превратятся в цифры,
  • помогите правильно определить и записать первое число в частное, совершите его умножение на делитель, запишите результат под делимым, выполните вычитание. Объясните, что результат вычитания всегда должен быть меньше делителя. В противном случае действие совершилось с ошибкой и его следует переделать,
  • следующий шаг — анализ ситуации с добавлением второго числа от делимого и определения количества раз повторения делителя в нём,
  • снова помогите с записью действия,
  • продолжайте до момента, когда результат от разницы составит ноль. Это актуально только для деления чисел без остатка,
  • закрепите знания у ребёнка еще несколькими примерами. Следите, чтобы он не устал, иначе дайте перерыв.

Простые и составные числа

Числовые значения в математике делятся на простые и составные. Ошибка многих новичков при решении задач состоит в том, что многие из них не знают о наличии специальных таблиц. Для «распознания» простого числа существуют два способа:

  1. Ручной.
  2. Табличный.

Первым методом рекомендуется пользоваться, когда нет возможности определить простое число при помощи таблицы или вычислительной машины (компьютера). Для этих целей существует специальный алгоритм, который состоит из набора шагов на нахождение делителя. Он имеет следующий вид:

  1. Произвести перебор всех множителей.
  2. Записать результат или убедиться, что число является простым.

Он является простым, но для понимания его математического смысла следует разобрать определенный пример для числа 5678913. Решение задания нужно осуществлять по следующей схеме:

  • 1: делится, то есть 5678913 / 1 = 5678913.
  • 2: не является четным. Следовательно, этого делителя не существует.
  • 3: 5 + 6 + 7 + 8 + 9 + 1 + 3 = 39 = 3 + 9 = 12 (делится).
  • 4: множитель отсутствует, поскольку 13 не делится на 4.
  • 5: число не заканчивается на 0 или 5 (не делится).
  • 6: сумма цифр равная 12, и делится на 2 и 3 (делится).
  • 7: 5|678|913 = 6 + 7 + 8 + 9 + 1 + 3 = 34 (нет делителя).
  • 8: 913 не делится на 8, 4 и 2.
  • 9: не делится, поскольку сумма цифр эквивалентна 12.

Когда нужно доказать, что число является простым, тогда можно завершить упражнение на третьем шаге. Для этого необходимо минимальное количество операций, поскольку дальше их выполнять не имеет смысла. Если суть решения заключается в нахождении делителей, то его можно продолжать до 9 пункта включительно.

Примеры на деление четырехзначного числа на однозначное с остатком с ответами:

Те же самые примеры на деление одного числа на другое с остатком, что приведены выше, но с ответами для быстрой проверки решений.

3167 : 5 = 633 остаток 24301 : 4 = 1075 остаток 19507 : 7 = 1358 остаток 17667 : 9 = 851 остаток 86985 : 6 = 1164 остаток 18853 : 9 = 983 остаток 64538 : 4 = 1134 остаток 28310 : 9 = 923 остаток 34886 : 8 = 610 остаток 69155 : 2 = 4577 остаток 13810 : 9 = 423 остаток 38177 : 3 = 2725 остаток 28822 : 5 = 1764 остаток 28685 : 6 = 1447 остаток 33596 : 8 = 449 остаток 48563 : 3 = 2854 остаток 15436 : 8 = 679 остаток 43766 : 3 = 1255 остаток 14461 : 4 = 1115 остаток 11785 : 9 = 198 остаток 34141 : 7 = 591 остаток 43287 : 3 = 1095 остаток 29226 : 5 = 1845 остаток 14096 : 5 = 819 остаток 18534 : 4 = 2133 остаток 2 2755 : 2 = 1377 остаток 15556 : 7 = 793 остаток 54307 : 4 = 1076 остаток 31787 : 4 = 446 остаток 33246 : 9 = 360 остаток 64748 : 9 = 527 остаток 57616 : 5 = 1523 остаток 14613 : 5 = 922 остаток 36779 : 2 = 3389 остаток 15469 : 2 = 2734 остаток 12551 : 8 = 318 остаток 74120 : 9 = 457 остаток 74111 : 2 = 2055 остаток 16653 : 2 = 3326 остаток 17953 : 6 = 1325 остаток 36157 : 5 = 1231 остаток 23311 : 8 = 413 остаток 71067 : 7 = 152 остаток 36990 : 9 = 776 остаток 69481 : 4 = 2370 остаток 13661 : 3 = 1220 остаток 18730 : 7 = 1247 остаток 17682 : 6 = 1280 остаток 27762 : 3 = 2587 остаток 19747 : 6 = 1624 остаток 3

Сгенерировано примеров на деление четырехзначного числа на однозначное с остатком с ответами в качестве тренажера по математике: 50

Скачать

Распечатать

На этой странице сайта результат работы генератора случайных примеров по математике на деление четырехзначного числа на однозначное с остатком для тренировки арифметических действий учениками 1, 2, 3, 4 классов средней общеобразовательной школы.

Тренировочные примеры по математике на деление четырехзначного числа на однозначное с остатком для учеников первого, второго, третьего, четвертого класса можно отображать для распечатки или скачивания в два, три или четыре столбца.

Математические примеры на деление четырехзначного числа на однозначное с остатком, которые приведены на этой странице сайте, могут использоваться в качестве тренажера для отработки арифметических действий учителями, преподавателями, родителями или репетиторами для учащихся 1-го, 2-го, 3-го, 4-го класса.

Задания на деление четырехзначного числа на однозначное с остатком, которые находятся в этом разделе сайта, можно использовать в карточках на уроках математики для закрепления пройденного материала.

Рекомендации специалистов

При изучении особенностей детского организма специалисты рекомендуют внести некоторые новшества в успешное овладение математическими навыками. Они считают, что умственную нагрузку нужно давать постепенно. Дети — это не взрослые, а значит, их необходимо заинтересовать. Существует множество видеокурсов. Они хороши, но не заменят индивидуального обучения.

Специалист может найти подход к ребенку, но отец и мать сделают это намного быстрее

Ему будет приятно, что родители уделяют ему внимание. Это и есть важный психологический аспект в обучении

Для каждой ситуации следует оборудовать рабочее место. Оно должно включать в себя следующие принадлежности:

  1. Таблица умножения.
  2. Тетрадь и ручка.
  3. Некоторые внетабличные примеры (не нужно использовать шаблоны).
  4. Алгоритмы на карточках.
  5. Примеры решения.
  6. Таблица простых чисел.

Таблицу умножения следует выучить, а затем забрать ее у ребенка. Всем остальным он должен пользоваться. Мозг человека способен к пассивному запоминанию информации. Ее нет смысла зубрить, а лучше потратить это время на решение упражнений. Знания отложатся в памяти. За каждый успех необходимо хвалить ребенка, но за его промахи ругать не имеет смысла. В этом случае нужно помочь

Очень важно делать перерывы. Время распределяется следующим образом: 40 минут занятие и 20 — отдых

Такую методику обучения рекомендуется применять, когда ребенок «частит» с пропусками школы.

Для деления трехзначного числа на однозначное нужно знать таблицу умножения, признаки делимости и основные алгоритмы.

Правила деления в столбик

Без остатка

Чтобы найти частное от деления одного числа на другое (с любым количеством разрядов) можно выполнить это арифметическое действие в столбик.

Рассмотрим правила деления на практическом примере для лучшего понимания. Допустим, нам нужно трехзначное число разделить на однозначное, к примеру 256 на 8. Вот, что мы делаем:

1. Пишем делимое (256), затем немного отступаем от него и в этой же строке дописываем делитель (8). Затем между этими числами дорисовываем уголок. Результат будем записывать под делителем.

2. В делимом слева направо отсчитываем минимально необходимое количество разрядов таким образом, чтобы полученное из содержащихся в них цифр новое число было больше, чем делитель. В нашем случае числа 2 недостаточно, поэтому к нему добавляем 5 и в итоге получаем 25.

Примечание: Если крайняя левая цифра делимого больше делителя, добавлять к нему цифру следующего разряда не нужно, и мы сразу приступаем к следующему шагу.

3. Определяем, сколько целых раз наш делитель содержится в полученном из цифр делимого числе (25). В нашем случае – три раза. Пишем цифру 3 в отведенном для этого месте, затем умножаем ее на делитель (3 ⋅ 8). Получившееся число (24) отнимаем из 25 и остается единица

Важно, чтобы результат вычитания (остаток) обязательно был меньше делителя, иначе мы неправильно выполнили вычисления

Примечание: Правила и примеры вычитания чисел столбиком приведены в отдельной публикации.

4. К остатку (1) добавляем следующую цифру делимого (6), чтобы получить новое число, которое снова больше, чем делитель.

Примечание: Если при добавлении следующей цифры образовавшееся новое число все еще меньше делителя, берем еще одну цифру справа (если есть такая возможность), при этом в частном пишем ноль. В противном случае, получается деление с остатком, которое мы рассмотрим далее.

5. В числе 16 содержится ровно два раза по восемь (2 ⋅ 8), следовательно, пишем 2 в частном, затем выполняем вычитание (16 – 16) и получаем остаток, равный нулю.

На этом деление столбиком числа 256 на 8 успешно выполнено, и частное равно 32.

С остатком

В целом, алгоритм действий аналогичен вышеописанному. Разница лишь в том, что при последнем вычитании остается неделимой остаток, к которому больше нечего дописывать из делимого, т.к. все его разряды уже были использованы. Остаток обычно записывается справа от результата в скобках.

Например, остаток от деления 112 на 5 равняется двум. То есть 112 : 5 = 22 (2).

Пояснение: в результате вычитания 10 из 12 получается 2, но к нему больше нечего дописать из делимого.

Признаки делимости

Для разбора алгоритма деления 2 значений, которые являются внетабличными (отсутствуют в таблице умножения), необходимо обозначить элементы операции. Пусть дано некоторое выражение v: t = p. Коэффициенты в нем расшифровываются следующим образом:

  1. V — делимое, т. е. число, которое требуется разделить.
  2. T — математики называют его делителем.
  3. P — частное является числовым результатом, который будет получаться при делении двух величин.

Иногда в литературе с физико-математическим уклоном можно встретить такую запись: v / t = p. Кроме того, числа классифицируются на простые и составные. К первой группе относятся все значения, которые делятся без остатка только на 1 или на значение равное исходному, т. е. 23 делится на 1 и на 23, а остальных делителей у него нет вообще. Вторая группа — значения, состоящие из нескольких множителей. Например, 100 = 25 * 4 = 5 * 5 * 2 * 2.

Десятичная система состоит из однозначных цифр, формирующих двузначные, трехзначные, четырехзначные, пятизначные числа (количество разрядов можно продолжать до бесконечности). Для деления двухзначного значения на однозначное без остатка необходимо знать следующие свойства (признаки деления):

  1. 0: операция невозможна, поскольку превращает все выражение в пустое множество.
  2. 1: делятся все значения.
  3. 2: последняя цифра является четным значением, т. е. 0, 2, 4, 6 и 8.
  4. 3: сумму цифр, составляющих число, можно разделить на 3. Например, проверить возможность деления 72 на 3. Для этого следует применить такое правило: 7 + 2 = 9. По таблице умножения 9 делится на 3 без остатка. Следовательно, 72 делится на 3.
  5. 4: сумма двух цифр делится на 4. Если представлено 5-значное число, то нужно рассматривать 2 последних цифры.
  6. 5: последней цифрой является 0 или 5.
  7. 6: деление на составные части, т. е. на 2 и 3.
  8. 7: возможность выполнения операции определяется по формуле / 7, где а, b и с — соответствуют первой, второй и третьей цифрам. Для двузначной величины — a / 7 и b / 7.
  9. 8: должно делиться на 2 и 4. Если количество цифр больше 2, то следует рассматривать делимость без остатка трех последних цифр.
  10. 9: деление по таблице умножения. Если число состоит из трех и более цифр, то следует рассматривать деления их суммы на 9.

Простые и составные значения

В некоторых случаях не всегда возможно воспользоваться специальными таблицами простых чисел. Математики рекомендуют применить одну из методик, которая заключается в следующем:

  1. Записать числовое значение.
  2. «Прогнать» его по всем признакам делимости.
  3. Сделать вывод.

Второй пункт для новичков может показаться не совсем понятным. Однако он подразумевает, что нужно поочередно выполнить операцию для каждого правила. На практике реализация выглядит следующим образом:

  1. 287.
  2. На 2 не делится (-), поскольку 7 — нечетная цифра.
  3. 3: 2+8+7=19 (-).
  4. 4: 8+7=15 (-).
  5. 5: (-), т. к. заканчивается не на 0 или 5.
  6. 6: (-), поскольку во втором и третьем пунктах стоит -.
  7. 7: 28−14=14 (+).
  8. Вывод: не является простым, поскольку делится на 7.

Определение типа числа

В математике числа делятся на простые и составные. Существует несколько способов определения их принадлежности к тому или иному виду:

  1. Автоматизированный.
  2. Ручной.

В первом случае применяются специальные таблицы простых чисел, тренажеры или вычислительные машины. Второй является наиболее трудоемким, поскольку нужно рассматривать каждый признак делимости. Если величина делится на 1, на саму себя и какое-либо другое, то является составным. Алгоритм определения простого числа:

  1. Выполнить перебор всех делителей.
  2. Сделать вывод.

Для примера следует разобрать значение 71

Следует обратить внимание на признаки деления. Новичкам рекомендуется выписать все цифры от 1 до 9

Далее следует возле каждого значения записать результат, поставив знак «+» при делении без остатка или «-» — с остатком:

  1. 1: «+».
  2. 2: «-» (не является четным).
  3. 3: «-» (7 + 1 = 8, 8 не делится на три).
  4. 4: «-» (7 и не делятся на 4).
  5. 5: «-» (последняя цифра не эквивалентна 0 или 5).
  6. 6: «-» (8 не делится на 3, но делится на 2. Этого условия недостаточно).
  7. 7: «-» (числа не делятся на 7).
  8. 8: «-» (не делится сумма цифр на 2 и 4).
  9. 9: отсутствует в таблице умножения на 9.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector