Деление натуральных чисел с остатком: правило, примеры решений

Алгоритм деления столбиком на двузначное число

1. Находим первое неполное делимое. Это число, которое делится на делитель с получением числа больше или равного 1. Это значит, что первое неполное делимое всегда больше делителя. При делении на двузначное число в первом неполном делимом минимум 2 знака. 

           Примеры        768:24. Первое неполное делимое 76                                265:53  26 меньше 53, значит не подходит. Нужно добавить следующую цифру (5). Первое неполное делимое 265.

2. Определяем количество цифр в частном. Для определения числа цифр в частном следует помнить, что неполному делимому соответствует одна цифра частного, а всем остальным цифрам делимого — еще по одной цифре частного.

           Примеры       768:24. Первое неполное делимое 76. Ему соответствует 1 цифра частного. После первого неполного делителя есть еще одна цифра. Значит в частном будет всего 2 цифры.                                265:53. Первое неполное делимое 265. Оно даст 1 цифру частного. Больше в делимом цифр нет. Значит в частном будет всего 1 цифра.                               15344:56. Первое неполное делимое 153, а после него еще 2 цифры. Значит в частном будет всего 3 цифры.

3. Находим цифры в каждом разряде частного. Сначала найдем первую цифру частного. Подбираем такое целое число, чтобы при умножении его на наш делитель получилось число, максимально приближенное к первому неполному делимому. Цифру частного записываем под уголок, а значение произведения вычитаем столбиком из неполного делителя. Записываем остаток. Проверяем, что он меньше делителя.

Затем находим вторую цифру частного. Переписываем в строку с остатком цифру, следующую за первым неполным делителем в делимом. Полученное неполное делимое снова делим на делитель и так находим каждое последующее число частного, пока не закончатся цифры делителя.

4. Находим остаток (если есть).

Если цифры частного закончились и получился остаток 0, то деление выполнено без остатка. В ином случае значение частного записывается с остатком.

Так же выполняется деление на любое многозначное число (трехзначное, четырехзначное и т. д.)

Общие сведения

Деление с остатком используется практически во всех дисциплинах с физико-математическим направлением. Операция позволяет записывать значения с выделением целой части. Одним из направлений является программирование. В этой дисциплине используются различные алгоритмы, работа которых основана на этом виде деления.

Следует отметить, что для выполнения этой операции существует определенная методика. Однако для ее реализации необходимы начальные знания. К ним относятся следующие:

  1. Понятие о частном.
  2. Правила делимости двух величин.

Операция частного состоит из трех элементов: делимого q, делителя p и их результата r. Выражение в математической форме имеет такой вид: q/p=r или q: p=r. Далее необходимо разобрать определение каждого компонента.

Делимое — числовое значение, которое нужно разделить на один из сомножителей. Делитель — один из множителей, на которые делится величина делимого. Результат операции называется частным двух или более чисел. Следует отметить, что деление классифицируется на два вида: без остатка и с его наличием.

В первом случае частное является целочисленным значением, а во втором — образуются две величины, а именно: целая часть и остаток. Последний записывается в скобках со знаком «плюс» и «минус». Например, 12 (+1) и 12 (-1). Первая величина эквивалентна 13, а вторая — 11. Затем следует разобрать правила делимости одного числа на другое.

Правило встречается в следующих упражнениях:

3 класс

Страница 76,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 59. Вариант 2. Тест 1,
Моро, Волкова, Проверочные работы

Страница 28,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 32,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 34,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 99,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 34,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 40,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 44,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 58,
Моро, Волкова, Рабочая тетрадь, часть 2

4 класс

Страница 35,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 54,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 79,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 62. Вариант 1. Проверочная работа 2,
Моро, Волкова, Проверочные работы

Страница 5,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 18,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 26,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 63,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 76,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 55,
Моро, Волкова, Рабочая тетрадь, часть 2

5 класс

Задание 533,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 545,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 550,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 599,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 954,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1082,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1091,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1161,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1167,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Номер 767,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 179,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 373,
Мерзляк, Полонский, Якир, Учебник

Номер 499,
Мерзляк, Полонский, Якир, Учебник

Номер 1098,
Мерзляк, Полонский, Якир, Учебник

Номер 1149,
Мерзляк, Полонский, Якир, Учебник

Задание 477,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 601,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1083,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1134,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 32,
Мерзляк, Полонский, Якир, Учебник

Номер 47,
Мерзляк, Полонский, Якир, Учебник

Деление с остатком целых положительных чисел, примеры

Все целые положительные числа являются натуральными. Отсюда следует, что деление выполняется по всем правилам деления  с остатком натуральных чисел. Скорость выполнения деления с остатком натуральных чисел важна, так как на нем основано не только деление положительных, но и правила деления целых произвольных.

Самый удобный метод деления – это столбик, так как проще и быстрее получить неполное или просто частное с остатком. Рассмотрим решение более подробно.

Пример 3

Произвести деление 14671 на 54.

Решение

Данное деление необходимо выполнять столбиком:

То есть неполное частное получается равным 271, а остаток – 37.

Ответ:14 67154=271. (ост. 37)

Как проводится

Деление с остатком – это способ, при котором число нельзя разделить ровно на несколько частей. В результате данного математического действия, помимо целой части, остается неделимый кусок.

Приведем простой пример того, как делить с остатком:

Есть банка на 5 литров воды и 2 банки по 2 литра. Когда из пяти литровой банки воду переливают в двухлитровые, в пятилитровой останется 1 литр не использованной воды. Это и есть остаток. В цифровом варианте это выглядит так:

5:2=2 ост (1). Откуда 1? 2х2=4, 5-4=1.

Теперь рассмотрим порядок деления в столбик с остатком. Это визуально облегчает процесс расчета и помогает не потерять числа.

Алгоритм определяет расположение всех элементов и последовательность действий, по которой совершается вычисление. В качестве примера, разделим 17 на 5.

Основные этапы:

  1. Правильная запись. Делимое (17) – располагается по левую сторону. Правее от делимого пишут делитель (5). Между ними проводят вертикальную черту (обозначает знак деления), а затем, от этой черты проводят горизонтальную, подчеркивая делитель. Основные черты обозначена оранжевым цветом.
  2. Поиск целого. Далее, проводят первый и самый простой расчет – сколько делителей умещается в делимом. Воспользуемся таблицей умножения и проверим по порядку: 5*1=5 помещается, 5*2=10 помещается, 5*3=15 помещается, 5*4=20 – не помещается. Пять раз по четыре – больше чем семнадцать, значит, четвертая пятерка не вмещается. Возвращаемся к трем. В 17 литровую банку влезет 3 пятилитровых. Записываем результат в форму: 3 пишем под чертой, под делителем. 3 – это неполное частное.
  3. Определение остатка. 3*5=15. 15 записываем под делимым. Подводим черту (обозначает знак «=»). Вычитаем из делимого полученное число: 17-15=2. Записываем результат ниже под чертой – в столбик (отсюда и название алгоритма). 2 – это остаток.

Обратите внимание! При делении таким образом, остаток всегда должен быть меньше делителя

Деление с остатком на 10, 100, 1 000

Рассмотрите внимательно примеры . На какие две группы можно их разделить?

79 : 10          450 : 10           900 : 100          817 : 100    95 000 : 1 000         95 600 : 1 000

Запишем в первый столбик примеры на деление без остатка, а во второй – с остатком.

450 : 10    

900 : 100    

95 000 : 1 000        

79 : 10   

817 : 100  

95 600 : 1 000

Вспомним, как разделить число на 10, 100, 1 000. При делении на 10  у делимого убираем один нуль, при делении на 100 – убираем два нуля, при делении на 1 000 – убираем три нуля. Очень просто! Решим примеры первого столбика.

450 : 10 = 45    

 900 : 100 = 9    

95 000 : 1 000 = 95 

А какое правило действует при делении на 10, 100, 1 000 с остатком?

У делимого не будем убирать цифры, а только лишь отступим (с конца) на одну цифру, если делим на 10, на две – если делим на 100, на три – если делим на 1 000. Вот так:

79 : 10           79

817 : 100          817

95 600 : 1 000       95 600

Получаем ответ и остаток.

79 : 10 = 7 (ост. 9)

817 : 100 = 8 (ост. 17)

95 600 : 1 000 = 95 (ост. 600)

Сделаем проверку умножением и прибавим остаток.

7 ∙ 10 + 9 = 79

8 ∙100 + 17 = 817

95 ∙ 1 000 + 600 = 95 600

Решили верно.

Ребята, помните о том, что при делении остаток должен быть меньше делителя!

Давайте проверим это правило в наших примерах.

79 : 10 = 7 (ост. 9)  9< 10

817 : 100 = 8 (ост. 17)  17 <100

95 600 : 1 000 = 95 (ост. 600)  600 < 1 000

Следующие примеры решите самостоятельно. Обязательно сравните остаток с делителем. Выполните проверку умножением.

714 : 100

54 : 10

78 340 : 1 000

Проверь себя.

714 : 100 = 7 (ост.14)  14 < 100    7 ∙ 100 + 14 = 714

54 : 10 = 5 (ост.4)  4 < 10    5 ∙ 10 + 4 = 54

78 340 : 1 000 = 78 (ост.340)  340 < 1 000    78 ∙ 1 000 + 340 = 78 340

Теорема о делимости целых чисел с остатком

Мы выявили, что а – это делимое, тогда b – это делитель, с – неполное частное, а d – остаток. Они между собой связаны. Эту связь покажем при помощи равенства a=b·c+d. Связь между ними характеризуется теоремой делимости с остатком.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом: a=b·q+r, где q и r – это некоторые целые числа. Тут имеем ≤r≤b.

Докажем возможность существования a=b·q+r.

Доказательство

Если существуют два числа a и b, причем a делится на b  без остатка, тогда  из определения следует, что имеется число q, что будет верно равенство a=b·q. Тогда равенство можно считать верным: a=b·q+r при r=.

Если посчитать, что b – целое положительное число, тогда, следует выбрать целое q так, чтобы произведение b·q не было больше значения числа а, а произведение b·(q+1) было больше, чем a. 

Тогда необходимо взять q такое, чтобы данное неравенством b·q<a<b·(q+1) было верным. Необходимо вычесть b·q из всех частей выражения. Тогда придем к неравенству такого вида: <a−b·q<b.

Имеем, что значение выражения a−b·q больше нуля и не больше значения числа b, отсюда следует, что  r=a−b·q. Получим, что число а можем представить в виде a=b·q+r.

Теперь необходимо рассмотреть возможность представления a=b·q+r для отрицательных значений b.

Модуль числа получается положительным, тогда получим a=b·q1+r, где значение q1 –некоторое целое число, r – целое число, которое подходит условию ≤r<b.  Принимаем q=−q1, получим, что a=b·q+r для отрицательных b.

Доказательство единственности

Допустим, что a=b·q+r, q и r являются целыми числами с верным условием ≤r<b, имеется еще одна форма записи в виде a=b·q1+r1, где q1 и r1 являются некоторыми числами, где q1≠q , ≤r1<b.

Когда из левой и правых частей вычитается неравенство, тогда получаем =b·(q−q1)+r−r1, которое равносильно r-r1=b·q1-q. Так как используется модуль, получим равенство r-r1=b·q1-q.

Заданное условие говорит о том, что ≤r<b и ≤r1<b запишется в виде r-r1<b. Имеем, что  и q1– целые, причем  q≠q1, тогда q1-q≥1. Отсюда имеем, что b·q1-q≥b. Полученные неравенства r-r1<b и b·q1-q≥b указывают на то, что такое равенство  в виде r-r1=b·q1-q невозможно в данном случае.

Отсюда следует, что по-другому число a быть представлено не может, кроме как такой записью a=b·q+r.

Деление с остатком и без

Иметь дело мы будем с целыми числами, а вот в результате может получиться и десятичная дробь, в зависимости от того, допустимо ли в задании частное с остатком. Для начала попробуем разделить трехзначное число на однозначное.

Пример 1

Возьмем 216 разделить 3. Попробуем записать пример:

Посмотрим, какая из первых цифр делится нацело на 3. Двойка? Нет. Значит, берем две цифры — 21. Получится 7, а промежуточное действие будет выглядеть так:
Теперь остается разделить на 3 последнюю цифру — 6, потому после первого шага остаток не образовался. Шестерку в столбике надо написать строго под той, что стоит в примере — в этом главный фокус, иначе можно очень легко сбиться. Что ж, давайте запишем аккуратно. Например, вот так:

Пример 2

Но может быть и другая ситуация. Например, когда первые две цифры на однозначное число нацело не делятся. Ничего страшного. Записываем:

Первым делом придется делить 76, никуда не денешься. Ближайшее число, кратное 8 (то есть то, которое делится без остатка), — 72. Его и будем отнимать. Получим 9, которое сразу запишем в частное, и 4 в остатке — его нужно поместить под чертой:

Основные приемы при делении

Делить значит последовательно вычитать делитель из делимого, пока это возможно. Этот способ деления можно считать общим. Прием этот, однако, приводит к длинным вычислениям, если делимое очень велико, поэтому существуют различные сокращенные приемы деления.

Чтобы определить частное в том случае, когда оно выражается одной цифрой, прибегают к таблице умножения.

Чтобы разделить 27 на 3 мы пишем

Для частного выбираем такое число, чтобы, умножив делитель на частное, получить делимое. Чтобы найти цифру частного, мы пробуем умножать делитель на разные числа или, как обыкновенно говорят, задаемся разными числами, и сравниваем произвдение делителя на частное с делимым.

Разделяя 27 на 3 и перебирая в уме все произведения 3 на разные числа, содержащиеся в таблице умножения, находим, что произведение 3 × 9 составляет 27 и потому пишем в частном 9. Вычитая произведение делителя на частное из делимого, получаем в остатке нуль.

Само вычисление выражают письменно:

Деление совершилось нацело.

Иногда делитель не содержится в делимом ровное число раз; так, разделяя 27 на 4, мы не находим в таблице целого числа, которое, будучи помножено на 4, дало бы 27; тогда деление не совершается нацело.

Отыскивая целое частно, мы имеем при этом три случая:

  1. Или мы задаемся очень малым числом; так, для данного примера, задавшись в частном 5 и умножив 4 на 5, имеем 20. Подписав произведение 20 под делимым и вычитая из 27, имеем:

    в остатке число 7 больше делителя 4. Это показывает, что частное 5 мало и его нужно увеличить.

  2. Или, взяв для частного 7 и умножив его на делителя 4, получаем произведение 28 больше делимого, что показывает, что мы задались в частно очень большим числом. В таком случае нужно уменьшить цифру частного 7.

  3. Взяв для частного 6, мы ход вычисления выражаем письменно:

    словесно: 4 в 27 содержится 6 раз, 4 * 6 = 24, подписываем 24 под делимым, вычитаем и получаем остаток 3. Остаток 3 меньше делителя, следовательно, цифра частного верна. Отсюда выводим следующее:

Правило определения частного:

  1. Если при делении остаток более или равен делителю, цифра частного мала и ее нужно увеличить.

  2. Если произведение делителя на частное больше делимого, цифра частно велика и ее нужно уменьшить.

  3. Если остаток меньше делителя, цифра частного верна.

Это правило показывает, что при делении нужно для частного выбирать такое число, чтобы остаток был меньше делителя. Задаваться так, значит задаваться наибольшим целым числом.

В данном примере 27 не делится нацело на 4, а получается остаток 3; число 6 есть целое частное и

27 = 4 × 6 + 3 = 24 + 3

Делимое 27 равно произведению делителя 4 на целое частное 6, сложенному с остатком 3.

Пример решения

Специалисты рекомендуют также решать задачи на деление с остатком для 5 класса. Это связано с тем, что для лучшего результата недостаточно просто проходить школьный материал, а необходимо составлять различные задания. Одно из них имеет условие следующего вида:

  1. Известен делитель и остаток: 3 и 2 соответственно.
  2. Число-делимое состоит из трех разрядов, сумма которых эквивалентна 17.
  3. Разряд сотен меньше десятков в 2 раза, а третий элемент меньше их суммы на 1.
  4. Частное состоит из трех разрядов, десятки и единицы которого равны, а сотня на 1 меньше любого из них.
  5. Необходимо найти делимое.

Математики рекомендуют решить задание самостоятельно, а затем сопоставить ответы. Оно решается по такой методике:

  1. Составляются уравнения (t — первый старший разряд, s — десятки и u — единицы): s=2t, u=t+2t-1, t+2t+(t+2t-1)=17.
  2. Корни последнего уравнения: t=3. Отсюда s=6 и u=8.
  3. Искомое число: 368.

Если подставить величины, которые получились во втором пункте, то можно сделать вывод о правильном нахождении значения. Оно состоит из трех разрядов, т. е. 368. Сумма последних составляет 17, что удовлетворяет условию задачи (3+6+8=17). Компонент, находящийся в разрядной сетке на месте сотен, меньше элемента разряда десятков в два раза, т. е. 6/3=2. Последняя цифра вычисляется по формуле: сотни+десятки-единицы=3+6−8=1.

Таким образом, операция деления в столбик с остатком выполняется при помощи методики, для применения которой нужно знать признаки делимости одного значения на другое, а также виды чисел и их главные отличия (простого от сложного).

Деление с остатком – общее представление об этом действии

В разделе мы сказали, что деление связано с разъединением исходного множества на несколько множеств, и отметили, что наибольший интерес представляет деление на равные части (на одинаковые множества).

Однако провести деление на равные части далеко не всегда возможно. Например, разделить 7 цветков в букеты, чтобы в каждом букете было по 3 цветка, не получится. Но из 7 цветков можно составить 2 таких букета (для этого нужно 3·2=6 цветков) и седьмой цветок оказывается «лишним» (из него не получится составить требуемый букет). Иными словами, один цветок остается. Еще можно сказать, что после деления исходного количества цветков указанным способом образуется остаток. Итак, 7 цветков мы разделили в 2 требуемых букета по 3 цветка в каждом, при этом остался 1 цветок. Рассмотренный пример наглядно демонстрирует деление с остатком.

Теперь мы имеем представление о делении с остатком и можем дать определение этому действию.

Определение.

Деление с остатком – это представление исходного множества в виде объединения некоторого количества требуемых множеств и еще одного множества, из элементов которого невозможно составить требуемое множество.

Способы деления

Имея два числа 12 и 4, мы можем разделить 12 на 4 различными способами.

  1. С помощью сложения мы можем определить, сколько раз нужно взять 4 слагаемым для того, чтобы получить в сумме 12. Так, взяв 4 слагаемым 3 раза, находим в сумме:

    4 + 4 + 4 = 12,

    следовательно, 4 содержится в 12 три раза.

  2. С помощью вычитания определяем, сколько раз можно из большего числа 12 вычесть меньшее 4. При этом мы вычитаем делитель до тех пор, пока это возможно. Так, вычитая последовательно из 12 по 4, имеем:

    12 — 4 = 8
    8 — 4 = 4
    4 — 4 = 0

    Отсюда находим, что можно вычесть 4 из 12 ровно три раза.

    Деление есть сокращенное вычитание равных вычитаемых.

  3. Наконец, посредством умножения, мы можем определить, на какое число нужно помножить 4, чтобы получить 12. Умножая последовательно 4 на 1, 2, 3, находим, что для того, чтобы получить 12, нужно 4 помножить на 3.

В чем состоит смысл деления с остатком?

В случае натуральных чисел деление с остатком имеет следующий смысл. Мы уже знаем, что понятие натурального числа тесно связано с количеством чего-либо. Допустим, у нас есть некое число предметов (обозначим его a), а после его деления образуется остаток, условно d. У нас остались числа b и c. Есть два основных подхода к их обозначению:

1) если b –количество элементов в каждом равном множестве, полученном после деления, то c – это количество множеств, которое у нас получилось.

2) если  b – это количество множеств, то c – это число предметов в каждом из них.

Поясним нашу мысль на конкретных числах. Допустим, натуральное число 13 было разделено на 4. В итоге мы имеем два числа – 3 и 1. Мы можем рассмотреть эту ситуацию с двух сторон:

1) тринадцать предметов были сгруппированы по 4. У нас получилось 3 группы, а в исходном множестве остался всего 1 предмет;

2) тринадцать предметов разложили по 4 группам. У нас получилось, что в каждой группе по 3 предмета, а остаток равен 1.

Если натуральное число a всегда можно разделить с остатком на любое натуральное b, то можно выделить следующие ситуации:

1. A можно разделить на b без остатка, то есть все предметы можно разделить на равные множества. При этом «лишних» у нас не останется, тогда d будет равно . Получается, что деление без остатка – это частный случай деления с остатком.

2. A может быть меньше b. Тогда ни одного требуемого множества мы из него составить не можем, и число c будет равно нулю, а остаток равен a (то есть числу предметов в исходном множестве).

3.  A может делиться на b с остатком. Тогдазначения a, b, c и d будут натуральными числами.

Подводим итог:

Определение 2

Результат деления натуральных чисел a и b с остатком – это два числа c и d, которые либо оба являются натуральными, либо одно из них равно нулю.

Различные случаи при делении

При делении целых чисел бывают два случая:

  1. Разделяя 12 на 4, мы находим в частном 3. Делитель 4 содержится ровно 3 раза в делимом 12. Вычитая последовательно из 12 по 4, мы могли вычесть число 4 ровно три раза и не получили никакого остатка. В этом случае говорят, что деление совершилось нацело или без остатка. Умножив частное 3 на делитель 4, получаем делимое 12.

  2. Разделяя 26 на 8, мы при последовательном вычитании получаем:

26 — 8 = 18
18 — 8 = 10
10 — 8 = 2

Далее нельзя продолжать вычитания, потому что из 2 нельзя вычесть делитель 8. Число 2 называют остатком.

Остаток всегда меньше делителя. В этом случае говорят, что деление не совершается нацело или деление совершается с остатком.

Разделяя 26 на 8, мы могли вычесть делитель 8 три раза, и у нас получился остаток 2. Число 3 мы будем называть целым частным. Целое частное есть не полное частное, ибо оно не выражает вполне, сколько раз меньшее число содержится в большем. Число 8 не содержится в 26 ровно 3 раза. В этом случае говорят: число 8 содержится в 26 три раза и еще получается остаток. Умножив делитель 8 на целое частное 3, мы не получим делимого 26, а число 24 — меньшее делимого. Чтобы получить делимое, нужно к этому произведению прибавить еще остаток 2.

Целое частное иногда называют просто частным.

Итак, при делении мы имеем два случая:

  1. Деление нацело или без остатка. Когда делитель содержится в делимом ровное число раз, тогда деление совершается нацело или без остатка. Частное выражает, сколько раз делитель содержится в делимом. Делимое равно делителю, умноженному на частное. В этом случае деление есть действие в котором по данному произведению и одному из производителей находится другой производитель.

    Если дается произведение и множимое, отыскивают множитель, то есть число равных слагаемых; если дается произведение и множитель, отыскивают множимое, то есть величину равных слагаемых.

  2. Деление с остатком. Когда делитель не содержится в делимом ровное число раз, тогда деление не совершается нацело, или деление совершается с остатком. Остаток всегда меньше делителя и делимое равно произведению делителя на целое частное, сложенное с остатком.

При делении целых чисел делимое всегда уменьшается во столько раз, сколько в делителе единиц, поэтому деление есть действие, обратное умножению.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector