Счет до 10 для детей — задания для распечатки

Сложение однозначных чисел

Сложение двух однозначных чисел выполняется так: одно число увеличивается на количество единиц другого числа. То есть, единицы одного числа присоединяются к единицам другого числа.

Например, для нахождения суммы 5+2 нужно к числу 5 присоединить 2 единицы. Тогда получим 5+2=7. А если нужно к числу 7 прибавить число 8, или другими словами, найти сумму 7+8, то после присоединения к 7 единиц числа 8 получим 1 десяток единиц и еще 5 единиц, то есть, число 15.

Сложение однозначных чисел – это первый и очень важный шаг в освоении этого арифметического действия. Если хорошо выучить все результаты сложения однозначных чисел между собой, тогда вы сможете намного быстрее складывать в уме любые числа.

Интересные способы научить прибавлять и отнимать

Ребенок должен запомнить многие числовые комбинации. Чтобы помочь лучше понять этот материал, рекомендуется предложить ему следующие задачи:

  • Рассортировать данное количество объектов в три тарелки, создав разные комбинации (варианты разные: повесить игрушки на две елки, расставить цветы в двух вазах, разместить гномов в двух домах);
  • дополнить число до желаемого;
  • заполнить ячейки, в которых записан состав с присвоенным номером;
  • дорисовать домино.

Числовой ряд

Поможет усвоить устный счет игра в интервал между значениями. Мама говорит, что загадала определенное число в промежутке от 5 до 18. Ребенок должен угадать, если он ошибается, взрослый определяет место в ряду, регулируя поиски словами «больше», «меньше», «добавь один», «отними два».

Первые успехи

Ребенку будет сложно понять на уроках математику в первом классе, если он не усвоил технику счета. Терпение, игровые методы, непринужденность и регулярность упражнений это необходимые условия для успешного обучения. Даже одна десятая материала, усвоенного ребенком самостоятельно, поможет освоить школьную программу.

Когда приступать к изучению состава числа

Наиболее подходящий возраст для погружения в тему состава чисел – 6 лет, время подготовки к школе. Но в некоторых случаях вполне уместно начать изучать состав небольших чисел раньше. Все зависит от индивидуальных особенностей ребенка и той базы, которой он уже владеет, а именно:

  • навык устного счета (другими словами, нужно уметь присваивать любым предметам порядковый номер);
  • навык устного счета в обратном порядке;
  • знание графического образа чисел (помнить, как они выглядят визуально и легко узнавать);
  • как преимущество – способность самостоятельно записывать число.

К освоению состава числа следует переходить после закрепления вышеперечисленных навыков, чтобы избежать трудностей и непонимания. А значит, начать нужно с изучения цифр от 1 до 10.

Таблица сложения до 10 для распечатывания

Для скачивания можно нажать на правую кнопку мышки над картинкой и выбрать «сохранить как».

Или скачать файлы ниже.

В первом столбце и в первой строке записаны слагаемые, в ячейках на пересечении соответствующих столбцов и строк записаны результаты.
Например, если первое слагаемое равно 4, а второе равно 3, то сумма будер равна 7:

Другие варианты, в том числе до 20, таблицу в другом цветовом оформлении можно найти и скачать для распечатывания в конце статьи. Кроме таблиц для удобного счета с древних времен используют также и другие способы, они описаны в соответствующем разделе, в этой же статье речь пойдет прежде всего о таблицах.

Прежде чем приступать к описанию этой темы, следует определиться с основными понятиями.

Например, что значит запись «4 + 5 = 9», и как это отразить в таблице сложения. В большинстве современных книг по математике приняты определенные названия для каждого из этих чисел. Мы будем применять на этой странице наиболее распространенные на сегодняшний день.

Согласно общепринятой терминологии, в вышеприведенном примере 4 и 5 – это слагаемые, 9 – сумма. Сложение также иногда называют прибавлением и суммированием, нахождением суммы. Также в математике есть термин «операция сложения».

Слагаемые иногда называют суммируемыми, а результат — результатом сложения или результатом суммирования.

Часто начинают изучение со сложения простых чисел. Первым этапом является сложение чисел до 10, далее от 10 до 20.

На этих этапах для более быстрого запоминания пользуются таблицами, которые, как и таблицу умножения, можно найти на оборотах некоторых тетрадей. Существует два вида таких таблиц сложения.

Первый – это, собственно говоря, не совсем таблица, а скорее сгруппированные простые равенства.

Таблица сложения равенства.
Расширенный вариант обычно представляют в следующем виде.

Таблица сложения до 20

Отсюда вытекает одно из свойств, справедливых для суммы чисел. Звучит оно так: «От перестановки мест слагаемых сумма не меняется». Это свойство справедливо и для большего количества слагаемых. Разберемся в вопросе о том, можно ли данной таблицей пользоваться в случае сложения нескольких слагаемых. Ответ: можно, но до определенных значений. В этом случае действия нужно производить постепенно. Сначала складываем первые два слагаемых, получаем некое число. Если это простое число, которое входит в таблицу, то мы находим его и к нему прибавляем оставшееся и так далее. То есть, ориентируемся на наличие значений в таблице. Например, 4+5+6. Начала находим результат для действия 4 + 5, в ячейке на пересечении их столбца и строки находится 9. Далее выполняем действие 9+6. Находим в таблице 9 и 6. Далее все аналогично. Для больших чисел обычно таблицы не составляются. Таблица вычитания. Этой же таблицей можно пользоваться и для операции вычитания. В этом случае производим обратные действия. В самой таблице находим значение, из которого нужно вычесть число. Затем проводим линию до того числа, которое вычитается, остается мысленно дойти до оставшегося значения. Оно и будет искомым. Совсем просто это можно осуществить при помощи линейки. В данном случае линейка подставляется от вычитаемого числа сначала вертикально, затем горизонтально. Или наоборот. Для быстрого устного счета часто запоминают результаты сложения, и со временем уже нет необходимости наличия таблицы перед глазами.

Для ознакомления также ниже представлены более старые варинты таблицы.
 

Таблицы сложения значительно упрощают повседневный счет, поэтому много лет назад люди начали их использовать и некоторые из них мы можем видеть в сохранившихся книгах. Например, так выглядела таблица сложения в книге «Арифметика» Магницкого Л. Ф. 1703 года издания.

(на картинке как раз фотография тоже сканированной версии переиздания 1914 года).

Как правильно научить ребёнка считать столбиком

Объясните, что в сложении и вычитании все действия производят по разрядам: десятки с десятками, единицы с единицами. Например, 31+12: тройка складывается с единицей, единица с двойкой. 

Для упрощения можно  делать  тренировочные упражнения — например, записывать числа друг под другом. Внизу цифра 6, вверху 12

Важно объяснить ребёнку, что шесть должна стоять под цифрой 2, а не 1, так как относится к единицам

Начните с простых примеров, где цифры при сложении образуют число меньше 10. Дальше можно переходить к примерам с переходом через десяток: например, 25+16. 5+6 в сумме дают 11. Тогда единицу от 11 мы пишем под чертой, а единицу в качестве десятка мы запоминаем. Когда складываем десятки, получаем 2+1 и ещё +1, который мы держали в голове.

В случае с вычитанием нужно также начать с простых примеров, постепенно переходя к более сложным. Например: 25−16, в столбике, где стоят единицы, 5 меньше 6, объяснить ребёнку, что в этом случае мы как бы «занимаем» у десятков единицу.

Для удобства можно использовать обозначения, которые на рисунке отмечены голубым. В первом случае дописан десяток, во втором — точка служит напоминанием о «зАнятом» десятке. 

Свойства сложения

Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число

Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.

Слагаемые — это числа, единицы которых складываются.

Сумма — это число, которое получается в результате сложения.

Рассмотрим пример 2 + 5 = 7, в котором:

  • 2 — это первое слагаемое,
  • 5 — второе слагаемое,
  • 7 — это сумма.

При этом саму запись (2 + 5) можно тоже назвать суммой.

Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.

Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.

Свойства сложения

  1. Переместительное свойство сложения
    От перестановки мест слагаемых сумма не меняется.
    a + b = b + a
  2. Сочетательное свойство сложения
    Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа.
    (a + b) + c = a + (b + c)
  3. Свойство нуля при сложении
    Если к числу прибавить нуль, получится само число.
    a + 0 = 0 + a = a

На заметку!
При сложении нескольких чисел, их можно объединять в группы и переставлять в любом порядке. Например: a + b + с = (a + b) + c = a + (b + c).

Общий приём сложения однозначных чисел с переходом через десяток

Итак, поговорим о сложении однозначных чисел. Ты уже знаешь, что обозначает это действие. Давай решим пример.

6 + 3 =

Посмотри, первое слагаемое в этом примере 6. Давай отсчитаем на счетах шесть косточек.

Второе слагаемое 3. Добавим три косточки.

Теперь пересчитаем все косточки вместе. Получим 9.

Значит, 6 + 3 = 9.

Это очень простой пример на сложение числа 6 с однозначными числами. Главная особенность таких примеров в том, что их результат не больше 10.

На счетах каждая палочка имеет по 10 косточек – ровно один десяток. Этого достаточно, чтобы решить любой пример на сложение в пределах 10.

Но сегодня мы будем учиться решать математические выражения другого вида. Сейчас мы разберем один пример и определим в чем заключается их особенность.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Когда можно решать примеры в пределах 20

При полном усвоении навыков счета до 10 рекомендуют приступить к действиям на втором десятке. Здесь необходимо только понимание, без подсказки и списывания у соседа. Как научить считать и разъяснять примеры ребенку в пределах 20?  Следует придерживаться пошаговой методики:

  1. Выучить порядковый счет второго десятка, очередность каждого элемента числового ряда. Для облегчения запоминания используют одинаковые предметы – карточки, кубики. Нанести числа только на первые десять единиц. Разложить их рядами, первый десяток с подписями, под ним второй, «слепой».
  2. Запоминать по схеме 14 – к слову четыре добавляется «– надцать», и так с каждым новым термином. Ребенок должен усвоить смысл названия порядковых чисел от 11 до двадцати.
  3. Приступить к понятию первый десяток, потом добавлять элементы второго ряда и проговаривать действия. «Десять плюс четыре получится четырнадцать». Должны прозвучать так все данные в интервале второго десятка.
  4. Отработать действия со сложением без перехода. По типу 10 + 6 = 16; 16 – 6 = 10. Когда этот этап освоен, выполняют действия повышенной сложности.

Пазлы для счета до 20

Примеры с переходом через десяток требуют развивать навыки устного счета. Знание состава числа при равной сумме облегчают запоминание алгоритма расчета по действиям на сложение и вычитание в пределах 100.

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Приемы сложения и вычитания вида□ + 3, □–3

А теперь продолжим сказку. Мимо теремка бежал зайчик. Он заметил в нем мышку-норушку и лягушку-квакушку. Подошел к ним и попросил пустить его в теремок.

Мышка и лягушка рассказали зайчику, что они составляют математические таблицы. Зайчик предложил им помочь, и они втроем приступили к составлению таблицы с числом 3.

Мышка и лягушка решили показать, как они научились решать примеры. Давай вспомним, как они умеют прибавлять. Мышка стала на число 4 и сделала шаг вперед. Куда она попала?

Правильно, мышка-норушка перешла на число 5. Таким образом она посчитала, что 4 + 1 = 5.

Затем на число5 вместо мышки стала лягушка и показала, как она умеет прибавлять число 2 – перепрыгнула через число.

Где она оказалась? Правильно, квакушка остановилась на числе 7.

А теперь давай проговорим весь процесс прибавления и разберемся, как наши зверята нашли результат математического выражения. С какого числа начали прибавлять? Правильно, первое слагаемое – 4. Сколько прибавили зверушки? Верно, сначала 1, а потом еще 2. А сколько это вместе? Ты же уже выучил таблицу на 1 и на 2. Вспомни, сколько будет вместе 1 и 2. Правильно, 3.

Значит мышка и лягушка к 4 прибавили 3 и получили 7. Вот как должна выглядеть математическая запись примера: 4 + 3 = 7.

Зайчик посмотрел, как его друзья двигались по числовому ряду. Он подошел и тоже стал на число 4. А потом ка-а-ак подпрыгнет и сразу через два числа перепрыгнул, чтобы на число 7 попасть.

Мышка и лягушка обрадовались, что у зайчика с первого раза легко получается решать примеры на прибавление числа 3. Они попросили его найти ответы во всех примерах из таблицы сложения для числа 3. Вот что друзья записали.

Представь, как будет передвигаться зайчик, чтобы найти результат первого математического выражения в этой таблице: к 1 прибавить 3. Он станет на число 1. А потом сделает боооольшой прыжок (через два числа).

Где окажется зайчик? Правильно, он остановиться на числе 4. Вот мы и узнали ответ. Друзья записали всю таблицу.

После этого они начали составлять таблицу вычитания числа 3. Мышка и лягушка объяснили зайчику, что при вычитании получается меньшее число, поэтому по числовому ряду нужно прыгать назад.

Вот первый пример из таблицы: 4 − 3. Зайчик стал на число 4 и перепрыгнул через два числа. Куда он попал? Какую первую запись сделали друзья?

Правильно.

4 − 3 = 1

Так они решили все остальные примеры.

Вот и замечательно. Эту таблицу с числом 3 ты тоже очень легко запомнишь. Представь, что ты зайчик и прыгай большими прыжками через два числа, чтобы найти ответ.

Приемы сложения и вычитания вида□ + 6, 7, 8, 9, □–6, 7, 8, 9

Поселились все зверюшки вместе в теремке. И дружно вместе принялись записывать остальные таблицы. Все примерах в них составляются на основе тех правил, о которых напомнила нам лисичка. Давай поможем им.

Начнем с таблицы сложения числа 6.

В предыдущих таблицах есть только четыре примера, в которых встречается слагаемое 6. Найди их.

Вот что выписали зверята.

Теперь переставляем слагаемые местами.

А теперь из этой таблицы мы легко можем составить таблицу вычитания числа 6. Попробуй сделать это самостоятельно.

Посмотри, какую таблицу вычитания числа 6 записали наши друзья.

Вот мы и закончили! У нас получилось составить таблицы сложения и вычитания числа 6.

Продолжаем. С таблицей сложения числа 7 нам повезло еще больше, ведь в ней будет всего три примера. Ты уже нашел их? Вот что записали зверята.

Надеюсь, ты не забыл еще переместительное свойство действия сложения, ведь оно нам пригодится при составлении таблицы с числом 7.

Подумай над этим сам. А потом проверь.

Все правильно. Теперь из предыдущей таблицы составим таблицу вычитания числа 7.

Не спеши, сделай это самостоятельно.

Проверь свою таблицу.

Как быстро ты со всем справился.

Дальше будет еще легче. Вспомни примеры, где встречается слагаемое 8.

В таблице сложения числа 8 всего два примера. Составь их.

Давай проверим.

Теперь составь таблицу вычитания числа 8.

Вот что получилось у наших друзей.

Вот мы и выучили таблицы сложения и вычитания с числом 8.

Ты, наверное, уже немного устал. Но нам осталось познакомиться всего с одной таблицей. Это таблица сложения и вычитания с числом 9.

Ты уже нашел пример с числом 9? Уверена, что ты справился. Назови его.

9 + 1 = 10

Давай переставлять. Что у нас получится?

1 + 9 = 10

Вот и вся таблица сложения с числом 9. Переходим к таблице вычитания числа 9.

У тебя уже все готово?

Правильно.

10 − 9 = 1

Мы с тобой неплохо потрудились и составили все таблицы в пределах 10. Вот как выглядит общая таблица сложения.

В этой таблице красным цветом выделены примеры, которые составлены путем перестановки слагаемых. Их запомнить очень легко.

А вот общая таблица вычитания чисел в пределах 10.

В этой общей таблице хорошо видны несколько закономерностей, которые помогут тебе лучше и быстрее запомнить результаты указанных математических выражений на вычитание.

  1. В результате вычитания числа 1 получается число, которое является предыдущим по отношению к уменьшаемому.
  2. В примерах, где уменьшаемое и вычитаемое являются «соседями» в натуральном ряду чисел, разность равна 1.
  3. В таблице есть «парные» примеры, которые можно составить из одного и того же примера на сложение.

В этих выражениях компонентами являются одни и те же числа. Присмотрись и найди другие подобные пары примеров.

Чтобы получше запомнить все примеры из таблиц сложения и вычитания чисел в пределах 10, почаще тренируйся. Не забудь о наших сегодняшних помощниках.

Таблицы сложения и вычитания числа 1 мы выучили с помощью мышки, которая переходила маленькими шагами с числа на соседнее число. Как найти результаты в таблицах сложения и вычитания числа 2 нам подсказала лягушка, которая умеет прыгать через число. Зайчик показал, как узнать ответы в примерах из таблиц сложения и вычитания числа 3, который скачет так высоко, что может перепрыгнуть через два числа сразу. А двойной прыжок лягушки поможет вспомнить результаты таблиц сложения и вычитания числа 4. Лисичка же разгадала закономерности составления всех остальных таблиц.

Обязательно используй все приемы, которые нам подсказали герои нашей сказки. Чем чаще ты будешь повторять примеры из таблиц, тем быстрее ты запомнишь результаты каждого из них. Надеюсь, ты легко справишься с проверочными заданиями к этому уроку.

Арифметические операции в позиционных системах счисления — урок. Информатика, 10 класс

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным правилам.

Правила выполнения арифметических операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление уголком. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд.

https://www.youtube.com/watch?v=Os22o9h3BXA

Таблица сложения в двоичной системе:

Таблица сложения в восьмеричной системе:

Пример:

1) Сложим числа (15) и (6) в различных системах счисления.

Решение. Переведем числа (15) и (6 )в двоичную и восьмеричную системы счисления и выполним сложение, используя таблицы сложения (см. выше).

Ответ: 15+6=2110=101012=258

2) Вычислим сумму чисел 438 и 5616. Результат представим в восьмеричной системе счисления.

Решение: переведем число 5616  в восьмеричную систему счисления, используя поразрядный способ перевода разложением на тэтрады и триады:

Пользуясь правилами сложения в восьмеричной системе счисления, получаем:

Ответ: 438 + 5616 = 1718

Вычитание осуществляется по тем же правилам, что и в десятичной системе счисления.

При вычитании из меньшего числа большего производится заем из старшего разряда.

Пример:

Вычислим разность (X — Y) двоичных чисел, если (X =)10101002 и (Y =)10000102. Результат представим в двоичном виде.

Решение:

Ответ: 100102

Замечание. Если вам трудно складывать или вычитать в системах счисления, отличных от десятичной, можете перевести числа в десятичную систему счисления, выполнить арифметические действия, а затем результат перевести в требуемую в ответе систему счисления.

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Таблица умножения в двоичной системе:

Таблица умножения в восьмеричной системе:

Умножение многоразрядных чисел в различных позиционных системах счисления происходит по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Пример:

Перемножим числа (15) и (12).

Ответ: 15⋅12=18010=101101002=2648

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. Следует только грамотно пользоваться теми цифрами, которые входят в алфавит используемой системы счисления.

Обрати внимание!

При выполнении любых арифметических операций над числами, представленными в разных системах счисления, следует предварительно перевести их в одну и ту же систему.

Угринович Н. Д. Информатика и ИКТ. Профильный уровень : учебник для 10 класса / Н. Д. Угринович. — 3-е изд. испр. — М. : БИНОМ. Лаборатория знаний, 2008, стр. 140-142

Самылкина Н. Н. Информатика : все темы для подготовки к ЕГЭ. (В помощь старшекласснику). М. : Эксмо, 2011, стр. 33-36

9 + 2 =

Сначала нужно дополнить первое слагаемое – число 9 – до 10. Для этого представим второе слагаемое — число 2 в виде суммы двух удобных чисел.

Давай прогуляемся в город и найдем дом с номером 10.

На одном этаже с числом 9 живет 1. Значит первое число, которым мы представим второе слагаемое 2, будет 1.

Чтобы найти пару, посмотрим на дом под номером 2 (это наше второе слагаемое).

Посмотри, кто живет на одном этаже с числом 1?

Правильно, число 1. Это наше второе число.

А теперь все быстро посчитаем: 9 плюс 1 будет 10. Затем к 10 прибавим еще 1 – получим 11.

Вот и все. Мы составили таблицу сложения однозначного числа с числом 2.

Приступим к решению примеров, в которых вторым слагаемым является 3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector