Долой калькулятор: 12 простых трюков, которые помогут вам быстро считать

Содержание:

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики. Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме. И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

Урок 1

Внимание и концентрация при счете в уме. Уроки 2-7

Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Нюансы, которые следует учитывать

Чтобы научиться умножать двузначные числа или складывать дроби, придется потратить достаточно много времени

Однако для более быстрого обучения важно концентрировать внимание на трех основных моментах, без которых время будет потрачено впустую:

Концентрация внимания
Процесс обучения будет куда более эффективным, если математик научится фокусировать свое внимание на той задаче, которую выполняет, ведь очень часто приходится отвлекаться на различные внешние факторы, которые не позволяют быстро посчитать или сложить в уме сложные числа

Чтобы такого не происходило, важно научиться концентрироваться на выполнении лишь одной задачи за один раз
Для этого стоит найти для место, где никто не будет мешать, а также постараться отбросить все мысли о работе, личной жизни, планах на будущее и прочем.
Формулы. Чтобы производить вычисление даже сложных математических уравнений в уме, придется запомнить основные формулы и теоремы, по которым это можно сделать

Само собой, чтобы найти неизвестную переменную, иногда можно использовать и банальный метод подбора, однако такой способ является гораздо более сложным. Поэтому важно выучить всю теоретическую информацию, которую можно будет использовать: формулу дискриминанта, теорему Виета и прочие математические хитрости, с помощью которых процесс счета упрощается в несколько раз.
Практика. Как бы это парадоксально ни звучало, но чтобы освоить технику быстрого счета в уме, необходимо для начала научиться выполнять те же задачи на листке бумаги. Ведь записывая выполнение того или иного упражнения, можно всегда посмотреть, где именно была совершена ошибка в процессе тренировки и сделать кое-какие выводы. Как только арифметик научится легко решать сложные примеры в тетради, самое время переходить на устный счет.

Основные способы быстрого счёта в уме

Для того, чтобы научиться складывать, вычитать, умножать или делить быстро, необходимо каждое из этих действий привести к определённой системе, которая будет работать чётко всегда, в любых случаях. 

Во время счёта у нас всегда есть одна очень важная проблема – переход через 10. Об этом нужно помнить.

Давайте рассмотрим удобную систему сложения.

Сложение

Давайте решим пример: 775+821

Для того, чтобы легко сложить эти числа, нам нужно разложить каждое число на сотни, десятки и единицы: 

775 – это 700+70+5

821 – это 800+20+1

Дальше мы складываем отдельно сотни, отдельно десятки и отдельно единицы друг с другом:

775+821= (700+800)+(70+20)+(5+1)= 1500+90+6= 1596

Безусловно, для того, чтобы делать это быстро, нужно хорошо знать таблицу сложения и уметь складывать и вычитать числа до 10.

Вычитание

Кажется, что вычитание всегда даётся нам сложнее, но на самом деле механизм проще, чем в сложении. 

При вычитании раскладывать на части нужно только то число, которое мы вычитаем.

Например: 

348 — 155

155 – это 100+50+5

А теперь считаем:

348 – 100 – 50 – 5 = 248 – 50 – 5 = 198 – 5 = 193

Особого внимания требуют вычисления с цифрой «9». Таблицу сложения и вычитания с девятками нужно выучить наизусть.

Интересно!

15 + 9 = 24

При сложении числа с девяткой последняя цифра в сумме слагаемых всегда будет уменьшаться на «1». В этом примере цифра «5» из первого слагаемого изменилась на «4» в ответе.

33 – 9 = 24

При вычитании с «9» последняя цифра в разности всегда будет увеличиваться на «1». В данном случае цифра «3» из уменьшаемого изменилась на «4» в ответе. 

Умножение

Нет лучшего способа умножать простые числа в уме, кроме как выучить таблицу умножения. Здесь всё довольно скучно и примитивно. Но! Зато сколько возможностей открывается, когда мы умножаем наизусть, даже представить сложно!

Давайте для начала разберёмся с двузначными числами:

28*8

Чтобы быстро умножить на «8», нам нужно разложить «28»

28 – это 20 и 8.

28*8= 20*8 + 8*8 = 160 + 64 = 224

28*38

Сначала раскладываем оба числа: 

28 – это 20 и 8;

38 – это 30 и 8.

28*38 = 20*30 + 20*8 + 8*30 + 8*8 = 600 + 160 + 240 + 64 = 1064

Интересно!

Умножить число на «11» намного проще, чем на другие множители.

Здесь достаточно просто сложить цифры умножаемого числа, и вписать сумму между этими цифрами.

Например: 35 * 11 = 3(3+5)5 = 385

А если в сумме получается больше 10, то первая цифра в ответе увеличивается на 1:

57 * 11 

5 + 7 = 12 – число больше 10. Значит «5» увеличивается на «1», и получается «6». И дальше записываем только вторую цифру от «12», то есть «2».

57 * 11 = (5+1)(2)7 = 627

Деление

Чтобы научиться делить сложные числа в уме, важно очень хорошо знать таблицу умножения. Давайте рассмотрим деление на однозначное число:

Давайте рассмотрим деление на однозначное число:

6728 : 6

В этом случаем на важно найти в многозначном числе самое ближайшее, что делится на «6» – это «6600». Раскладываем: 6728 = 6600 + 128

Раскладываем: 6728 = 6600 + 128

6728 : 6 = 6600 : 6 + 128 : 6 = 1100  + 128 : 6

128 – это 120 и 8

120 : 6 = 20

8 : 6 = 1, (3)

У нас есть ответы по частям, теперь нужно сложить все эти части:

6728 : 6 = 1100 + 20 + 1, (3) = 1121, (3)

Самое сложное – это деление многозначных чисел:

Представим, что нам нужно разделить 4608 на 64.

На сколько примерно нужно умножить 64, чтобы получить число рядом с нашим? Может быть, на 70? Давайте проверим:

64 * 70 = 4480

Получилось число немного меньше того, что нам нужно, однако ясно, что искомый множитель находится в промежутке между 70 и 80. 

Чтобы подобрать правильный «хвостик» к «70» нам нужно, чтобы произведение этой цифры на 4 (от «64») давало в результате число с окончанием 8 (от «4608»). 

Теперь нужно подобать эту цифру: 

2 * 4 = 8

«Хвостик» к 70 найден, проверяем «72»:

64 * 72 = 60 * 70 + 4*70 + 60*2 + 4*2 = 4200 + 280 + 120 + 8 = 4608.

Конечно, сразу считать в уме быстро вы не сможете. Здесь, как и в любом другом деле, необходима тренировка. Поэтому просто начните с простого и старайтесь заниматься каждый день. Тогда результат абсолютно точно вас порадует.

Для более организованной тренировки рекомендуем бесплатное приложение для мобильных устройств «Тренажёр устного счёта». С ним вам не придётся придумывать себе примеры самостоятельно, а также будет легче отследить динамику. Успехов!

Как выбрать школу или курс ментальной арифметики

Чтобы выбрать подходящую школу ментальной арифметики для ребенка, проверьте:

Сколько детей в группе. Чем младше дети, тем меньше должна быть группа. Рекомендуемый размер группы для дошкольников — до восьми человек, для начальной школы — до десяти человек.

Какая квалификация у преподавателя. Преподавателю необходимы профильные навыки. Он может их получить в центрах ментальной арифметики. Узнайте об образовании педагога и посмотрите его сертификаты. Международный сертификат по ментальной арифметике — дополнительный плюс.

Дают ли учебные материалы. Одно из важнейших условий обучения — возможность наблюдать за каждым действием педагога. Так вы сможете проверить учебные материалы и качество образования

Хорошим решением может стать онлайн-платформа.

Есть ли домашние задания
Ментальная арифметика предполагает регулярное закрепление полученных знаний, поэтому важно обратить внимание на качество и формат домашних заданий.

Есть ли пробное занятие. Для ребенка это безопасная возможность попробовать ментальную арифметику, для вас — проверить качество школы или курса.

Использование при устном счете вычислительных приемов

Высшей степенью владения навыками устного счета является умение находить наиболее быстрый и удобный способ подсчета результата. Такие приемы нужно начинать разъяснять детям сразу же после ознакомления их с действиями сложения и вычитания.

Так, например, одним из первых способов, как научить ребенка считать в уме в 1 классе, является методика присчитывания и «перепрыгивания». Дети быстро понимают, что при прибавлении 1 получается последующее число, а при вычитании 1 — предыдущее. Потом нужно предложить познакомиться с лучшей подружкой числа 2 — лягушкой, которая умеет перепрыгивать через число и сразу же называть результат прибавления или вычитания 2.

Аналогично происходит объяснение принципа выполнения этих математических действий с числом 3. В этом поможет пример зайчика, который умеет прыгать подальше — сразу через два числа.

Также детям нужно продемонстрировать приемы:

  • перестановки слагаемых (например, чтобы посчитать 3 + 68, проще поменять числа местами и прибавить);
  • присчитывания частями (28 + 16 = 28 + 2 + 14);
  • приведение к круглому числу (74 – 15 = 74 – 4 – 10 — 1).

Процесс подсчета облегчает умение применять сочетательный и распределительный законы. Например, 11 + 53 + 39 = (11 + 39) + 53. При этом дети должны уметь видеть самый простой способ подсчета.

Математические хитрости и способы устного счета

Существует немало методов, позволяющих существенно сэкономить время, которое обычно тратится на расчеты. Мы же рассмотрим те из них, которые можно применять даже для счета в уме:

  • сложение и вычитание двузначных чисел с округлением одного из них. Допустим, нужно сложить 28 и 34. Мы представляем 28 как 30 (округляем его до десятков) и прибавляем к нему 34. Получается: 30+34 = 64. Из полученного значения вычитаем 2 (число, которое мы добавили для округления): 64-2 = 62. Также этот метод подойдет и для вычитания. Например, требуется из 72 вычесть 36, и мы округляем вычитаемое до большего десятка, получая из него 40. Теперь от 72 отнимаем 40, получая 32. Прибавляем значение, которое мы добавили для округления вычитаемого, и получаем ответ: 32+4 = 36.
  • сложение и вычитание многозначных значений с разложением на разряды. К примеру, нам требуется найти сумму 272 и 489. Каждое из этих значений мы разбиваем на разряды: 272 = 200+70+2; 489 = 400+80+9. Теперь нам нужно сложить соответствующие друг другу разряды: 272+489 = (200+400)+(70+80)+(2+9) = 600+150+11 = 761. Аналогичный подход можно применять и для нахождения разности, но в этом случае нельзя забывать про «занятые» у больших разрядов десятки, сотни и так далее.
  • умножение на однозначное и многозначное число с разложением на разряды. К примеру, нужно произвести умножение 25 и 34. Каждый из множителей раскладываем на разряды: 25= 20+5; 34 = 30+4. Далее мы умножаем каждый разряд первого множителя на каждый разряд второго, суммируя полученные значения между собой: ((20*4)+(5*4))+((20*30)+(5*30)) = (80+20)+(600+150) = 100+750 = 850. Если один из множителей является однозначным, то разбивается на разряды только многозначный множитель.
  • деление методом подбора. К примеру, нам нужно разделить 756 на 36. Наша задача – представить выражение как следующее уравнение: x*36=756. Чтобы найти неизвестное, нужно подставить вместо него ближайшее подходящее значение, начиная с большего разряда: 10*36 = 360 – не подходит (получается слишком маленькое значение); 20*36 = 720 – близкое значение к 756 (подходит, запоминаем число 20). Теперь из 756 вычитаем 720, получается 36. Теперь полученное число 36 делим на делитель 36 и получаем 1. Прибавляем 20 к 1, получая 21. 

С помощью перечисленных методов любой человек может осуществлять подсчеты в уме, но чтобы правильно производить их, потребуется хорошая память и внимательность. Поэтому многие предпочитают таким приемам другие методы вычислений.

Техника деления

Математическая формула деления – это «обратное» умножению. То есть при умножении складывали, а при делении вычитают. Чтобы разделить 56 на 7, подбирают число, при умножении которого на 7 в итоге будет 56. Зная таблицу умножения, сделать это просто, искомое число 8.

При делении многозначного числа на однозначное от исходного показателя «отрезают» круглые части, каждая из которых будет делиться на 8, в соответствии с таблицей умножения.

Пример 6144/8 решают так:

  1. Из 6144 выделяют максимально большую часть, делимую на 8. Это 5600, поскольку следующее число по таблице умножения 64.
  2. 6144-5600 = 544.
  3. Итого 6144/8 = (5600+544)/8 = 700+544/8.
  4. Чтобы поделить 544 на 8, снова выделяют из числа большую часть, делимую на 8 по таблице умножения. Это будет 480. В итоге получают остаток 64, поскольку 544-480 = 64.
  5. Продолжают деление 544/8 = (480+64)/8 = 60+64/8.
  6. Вспоминают все полученные ранее результаты: 700+60=760, решают задачу 64/8 = 8.

В итоге получают 760+8 = 768.

Техника деления на двузначное число

Эта самая гениальная техника, ни на что не похожая. Решая пример 5148/66, делают так:

  • подгадывают, в каком десятке будет лежать результат;
  • получают 70, поскольку при решении 70*66 = 4620, это самое близкое число к исходному делимому 5148;
  • применяют математический закон о последней цифре результата умножения двух чисел – она всегда совпадает с последней цифрой результата умножения;
  • получают искомое число, которое при умножении на 66 дает 5148 – это будет окончание на 3 или на 8 (3*6 = 18, 8*6 = 48);
  • считают по окончаниям в десятке между 70 и 80 – находят всего два числа 73 и 78;
  • теперь умножают 78*66 = 78*60+78*6 = 4680+468 = 500+148 = 5148.

Правильный ответ примера 5148/66 = 78.

Деление на 5, 50, 25

Применяют правило – умножают число на 2 и перемещают запятую на одну цифру назад. Например, 145/5 = 145*2 = 290, смещение запятой назад дает в итоге 29.

При делении на 50, 25 применяют формулы:

  • А/50 = А*2/100;
  • А/25 = А*4/100.

Например, 2350/50 = 2350*20/100 = 4700/100 = 47 и т.д.

Устный счёт

Предположим, ваш ученик 2 класса имеет проблемы с математикой – снижаем класс. Работаем как с первоклассниками (а то и дошкольниками), потихоньку усложняя материал, чтобы школьник достиг лёгкости в счёте на наличном уровне. Скажем,

  1. освоил действия сложения и вычитания в пределах первого десятка,
  2. переходим ко второму – решаем примеры типа 10+N=Z (10+7=17, 17-7(10)=10(7),
  3. действия с переходом через десяток,
  4. умножение/деление (при наличии в программе обучения)

Даём лёгкие задачи для приобретения уверенности. Учим побеждать.

Как устный счёт поможет при математической тревожности

Устный счёт развивает

внимание,
оперативную память,
скорость мышления.

Внимание

Почему не рекомендуется записывать при вычислениях в уме или опираться на уже написанные примеры? При записи школьнику не нужно запоминать условие. Он может легко отвлечься на посторонние стимулы, вернувшись решать с места отвлечения. Если приходится держать условие в памяти, то отвлечься уже нельзя, всё забудешь. Происходит концентрация на задаче в течение всего решения. Отвлёкся – забыл. Тренировка вычислительных навыков прекрасно развивает объём и концентрацию внимания.

Однако есть случаи, когда поначалу можно писать. Например, шестиклассник никогда не занимался устным счётом. Сосредоточиться сразу трудно, даём письменную опору. Но это только поначалу.

Оперативная память

Как с оперативной памятью? Оперативная память обслуживает умственные процессы, протекающие здесь и сейчас. Для решения задач до выпускного класса именно она и требуется.

Как заниматься вычислениями?

Как научить ребёнка быстро считать. Обычный ответ: тренироваться. Занимаясь с учеником тренировкой навыка каждый день по 5 минут, вы научите его очень быстро считать. Только у одного ребёнка из 100 это будет не так. Там другие проблемы. Просто решайте примеры.

Вычислениями в уме надо заниматься не только при отставании, но и опережении учеником одноклассников по математике. Благополучному школьнику тоже должно быть немного трудно, иначе он перестанет развиваться.

Нужно ли объяснять приёмы устного счёта?

Подходы разные. Большинство математиков считают, что ребёнок должен считать так, как ему удобно. В процессе тренировок у него вырабатываются свои вычислительные приёмы. Время от времени задавайте ученику или дошкольнику (с кем работаете) вопрос: а как ты посчитал; а я вот так посчитала. Это хорошая пауза для отдыха в процессе устного счёта.

Но все соглашаются, что какие-то простые приёмы удобно показать. Например, 99х5=? можно перемножать прямо, а можно представить 100х5-5. Имея собственные приёмы ребёнок с удовольствием их совершенствует. Но в любом случае считать лучше как удобно. (Не все учителя согласятся)

Ещё раз обращаю внимание взрослых: очень осторожно, дозировано повышайте нагрузку. Пять минут не отвлекаться, сосредотачиваясь на работе, большая нагрузка. Подчёркиваю: БОЛЬШАЯ. Пишу о технике безопасности, потому что родители порой меры не знают

Если взрослого заставить считать в уме 40 минут, то его придётся после занятия отмачивать в ванной и откармливать мороженным. Всё полезно в меру

Подчёркиваю: БОЛЬШАЯ. Пишу о технике безопасности, потому что родители порой меры не знают. Если взрослого заставить считать в уме 40 минут, то его придётся после занятия отмачивать в ванной и откармливать мороженным. Всё полезно в меру.

Нельзя подгонять, требовать вычислять быстрее при отсутствии у ребёнка навыка. Пускай считает в своём темпе. Результат дадут только систематические занятия.

В каком возрасте лучше начинать занятия устным счётом?

В любом, ограничений нет. Но чем младше школьник, тем больше шансов у него считать быстрее. Для взрослых устный счёт – прекрасная профилактика старческого слабоумия и сохранения умственной активности. Есть виртуальные программы в интернете для тренировок взрослых людей.

Автор Обнорская Галина — педагог-психолог высшей квалификационной категории

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности

Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм

Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время

Действие умножения

Если понимать, что умножение – это сложение одинаковых чисел определенное количество раз, ничего сложного в действии нет. Например, 4*7 = 4+4+4+4+4+4+4. В итоге получают 28. Упростит действие таблица умножения. Ее знает каждый школьник.

Чтобы правильно умножать числа, их сводят к простым. Рассмотрим техники умножения.

Умножение 9 и 11

Правило при умножении на 9 умножают на 10 и вычитают 9. Если умножают на 11, сначала умножают на 10, прибавляя исходный показатель.

Пример:

  • 15*9 = 15*10-15 = 150-15 = 135;
  • 57*11 = 57*10+57 = 570+57 = 627.

Умножение на 5 чисел до 10

Эта техника поможет правильно умножать двух-, трехзначные числа. Правило простое – множитель делят на 2. Получив результат в виде целого показателя, добавляют в конце 0, а если число не целое, отбрасывают остаток и добавляют в конце 5.

Пример 1482*5 решают так:

  • (1482/2) _ (+0 или +5) = 741 _ (+0) = 7410 – исходный показатель делили на 2 без остатка;
  • 2269-5 = (2269/2) _ (+0 или +5) = 1134,5 _ (+5) = 11345 – исходный показатель делили на 2 с остатком.

Техника, как быстро научиться считать деньги, умножая число на 5, 25, 50, 125 с использованием формул:

  • А*5 = А*10/2;
  • А*50 = А*100/2;
  • А*25 = А*100/4;
  • А*125 = А*1000/8.

Приставляя вместо А цифру, в процессе решения формулы получают нужный результат. Например, 25*25 = 25*100/4 = 2500/4 = 625.

Умножение больших чисел с одним четным

В этом случае пользуются методикой упрощения множителей. Четное число уменьшают в 2 раза, а нечетное увеличивают в 2 раза. Например, 48*125 = 24*250 = 12*500 = 6*1000 = 6000.

Умножение многозначного числа на однозначное

Разбираясь, как научиться быстро считать деньги на кассе, пользуются техникой раскладывания на порядки, как в случае сложения. Пример 468*6 решают так:

  1. Раскладывают 468 на 400, 60, 8. Умножают каждое число на 6.
  2. Получают (400*6) = 2400 + (60*6) = 360 + (8*6) = 48. Итого 2400+360+48 = 2808.

Более сложный вариант с перегруппировкой итоговых результатов выглядит так: 2400+360+48 = 2000+400+300+60+48 = 2000+700+108 = 2808.

Умножение простых чисел

Диагональный метод нужен при поисках техники как быстро научиться считать устно. Заключается способ в дописывании числа, которого «не хватает до 10».

Пример 7*8 решают так:

  • высчитают недостающее до 10 – в 7 это 3, в 8 это 2;
  • затем 8-3 = 5;
  • 3*2 = 6;
  • в итоге получают 56.

Умножение чисел от 10 до 20

Правило – к одному числу прибавляют единицы другого, а сумму умножают 10. К результату добавляют сумму единиц. Например, 13*15 = (13+5)*10 + 3*5 = 180+15 = 195.

Умножение двузначных чисел

Упрощают процесс снова разложением двузначных чисел на простые действия. Пример 78*56 решают так:

  1. В итоге должно получиться сложение цифры 78 точно 56 раз. Сначала складывают 78 пятьдесят раз, затем еще 6 раз.
  2. Считают 78*5 = 70*5 + 8*5 = 350+40 = 390*10 = 3900.
  3. 78*6 = 70*6 + 8*6 = 420+48 = 468.
  4. 3900+468 = 3000+900+400+60+8 = (3000+1300+60+8) = 4368.

Пользуясь принципом упрощения и раскладывания больших чисел на разряды, умножают все двузначные числа.

Умножение на 9, 99, 999

Учитывают правило прибавления недостающих единиц. Пример 154*99 решают так: 154*(100-1) = 15400-154 = 15246. Таким же образом умножают на 9, 999.

Возведение в квадрат

Это тоже умножение, при котором число раскладывают на составляющие. Сначала находят произведение первой цифры на следующую за ней, результат будет заканчиваться на квадрат последней цифры. Пример возведения 75 в квадрат решают так: 7*8 = 56; 5*5 = 25. В итоге 75*75 = 5625.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector